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Abstract— Three-dimensional local descriptors are crucial for
encoding geometric surface properties, making them essential
for various point cloud understanding tasks. Among these
descriptors, GeDi has demonstrated strong zero-shot 6D pose
estimation capabilities but remains computationally impractical
for real-world applications due to its expensive inference process.
Can we retain GeDi’s effectiveness while significantly improving
its efficiency? In this paper, we explore this question by
introducing a knowledge distillation framework that trains an
efficient student model to regress local descriptors from a GeDi
teacher. Our key contributions include: an efficient large-scale
training procedure that ensures robustness to occlusions and
partial observations while operating under compute and storage
constraints, and a novel loss formulation that handles weak
supervision from non-distinctive teacher descriptors. We validate
our approach on five BOP Benchmark datasets and demonstrate
a significant reduction in inference time while maintaining
competitive performance with existing methods, bringing zero-
shot 6D pose estimation closer to real-time feasibility.

I. INTRODUCTION

Three-dimensional descriptors (or features) encode geo-
metric surface properties through compact numerical repre-
sentations [1]. They are essential for various downstream
tasks in point cloud understanding, including registration [2],
object 6D pose estimation [3], segmentation [4], [5], and
navigation [6]. These descriptors can be broadly categorized
into local and global based on the information they encode.
Local descriptors operate at the point or patch level, capturing
fine-grained geometric details [2], [7]–[9]. Global descrip-
tors also provide point-level representations, but aggregate
geometric information from the entire point cloud [10]–
[12]. Global descriptors are generally more computationally
efficient [13] but often sacrifice generalization across different
data domains [2].

Local descriptors can achieve rotation invariance through
local reference frames (LRF) [2] or point-pair features
(PPF) [14]. LRF-based methods establish a local coordinate
system for each point using surrounding geometric infor-
mation [15]. PPF-based methods compute antisymmetric 4D
features from pairs of 3D points and their surface normals [16].
Among local descriptors, GeDi [2] has been successfully
applied to 6D pose estimation1 through the FreeZe method [3]
in a zero-shot setting, achieving performances that, for the
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16D pose estimation involves determining the rotation and translation of
a query object (e.g., CAD model) relative to the reference frame of a target
object in a scene (e.g., captured by an RGB-D camera).
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Fig. 1. We introduce dGeDi, a 3D point cloud encoder trained by distilling
GeDi [2] features (Teacher, Top) into a PointTransformerV3 [18] (PTV3)
backbone (Student, Bottom). GeDi suffers from slow inference as it processes
points sequentially (multiple input arrows), first extracting local reference
frames (LRF) and then computing descriptors with PointNet++ [17] (PN++).
Instead, dGeDi retains GeDi’s generalization and distinctiveness while being
over 170 times faster, making it ideal for real-time robotics applications.

first time in the literature, nearly match those of state-of-
the-art fully-supervised methods. However, GeDi’s inference
time is impractical for real-world applications due to its
computationally expensive process: LRF calculation [15]
for each point followed by a PointNet++-based descriptor
encoding step [17] (top Fig. 1).

In this work, we explore how to address this inefficiency
by using knowledge distillation [19] to train a student model
(bottom Fig. 1) that regresses GeDi local descriptors, i.e.,
the teacher model. However, this presents several challenges.
Distillation in this context requires large-scale point cloud
datasets [20]–[22]. The rotation and scale invariance proper-
ties of the teacher model have to be effectively transferred
to the student model. Low inlier ratios must be handled,
as only a small subset of descriptors is typically reliable,
resulting in a significant imbalance during distillation, where
most points provide unreliable supervision. Despite these
challenges, our approach presents unique opportunities. A
more efficient descriptor extractor could bring zero-shot 6D
pose estimation closer to real-time performance, making it
more viable for practical applications. Moreover, by tailoring
the distillation process specifically for 6D pose estimation, we
can improve descriptor robustness to occlusions and partial
observations. To the best of our knowledge, this is the first
attempt to apply distillation to 3D local descriptors.

To this end, we introduce a distillation approach to train
an efficient neural network (student) based on PointTrans-
formerV3 (PTV3) [18] to generate GeDi descriptors (teacher).
We refer to our approach as dGeDi, derived from distilled
GeDi. A key challenge when distilling GeDi is balancing



efficiency and practicality. On the one hand, a naive online
distillation approach, where the teacher is computed jointly
with the student, is impractical due to GeDi’s slow run-time,
making training excessively slow. On the other hand, a naive
offline distillation, where teacher features are precomputed,
would be highly storage-inefficient. To overcome these
limitations, we propose a novel learning via correspondences
paradigm. Offline, we precompute features from a query
object, while online, we transfer them to the target object
present in the scene using ground-truth transformations from
synthetic 6D pose estimation datasets. This allows scalable
training on large datasets while keeping compute and storage
requirements manageable. Another challenge is that, unlike
regression, where supervision comes from precise ground-
truth annotations, our distillation supervision can include non-
distinctive descriptors (e.g., on the BOP Benchmark [23], only
3% of points can be matched through nearest neighbor search
in the teacher feature space). Standard loss functions [24],
[25] tend to overfit these outliers, producing unreliable
student features. To mitigate this, we introduce a novel loss
function that weights each point’s contribution based on its
registration error. Points with errors above a certain threshold
contribute almost equally, preventing excessive penalization
from outliers. Since training data are synthetic, we incorporate
data augmentation to enhance rotational robustness in the
student model and reduce the synthetic-to-real domain gap.
We validate dGeDi through direct comparison with GeDi [2]
and further evaluate its effectiveness by integrating it into
FreeZe [3], a state-of-the-art zero-shot pose estimator. Addi-
tionally, we conduct an extensive ablation study to analyze
dGeDi’s key components. Experimental results demonstrate
that dGeDi significantly reduces inference time while main-
taining competitive performance with alternative methods. In
summary, our main contributions are:

• We introduce a distillation approach to learn local 3D
descriptors for zero-shot 6D pose estimation using an
efficient neural network, achieving a 170-times speed-up
without compromising accuracy.

• We propose a data-scaling technique that enables training
on large-scale synthetic data while significantly reducing
memory requirements.

• We design a novel loss function that weights the
regression error to prevent overfitting on synthetic data,
thereby improving generalization.

II. RELATED WORKS

A. Zero-shot object 6D pose estimation

Zero-shot pose estimation methods estimate the 6D pose of
objects that are unseen during training. These methods train on
synthetic dataset or leverage the knowledge acquired by pre-
trained vision and geometric foundational models. The first
category of methods like MegaPose [26] and ZeroPose [27]
uses render and compare strategy. At first a classification
network selects the best-matching template from a set of
rendered images that closely resemble the input image. Then,
a refiner network iteratively determines the pose by matching

the selected template with additional viewpoints. Since these
method requires a separate inference for each input image
and template pair, the computational cost and inference time
scale linearly with the number of templates. Methods like
GigaPose [28] addresses the issue of inference time scaling.
It renders templates to extract dense features using a Vision
Transformer (ViT), and then finds the best template using
fast nearest neighbour search in the feature space. On top,
two lightweight MLPs estimate the 2D scale and in plane
rotation from a single 2D-2D correspondence and the two
relative patch features extracted by another feature extractor.
SAM-6D [29] leverages ViT to extract features that are back-
projected into 3D to find 3D-3D correspondences between
two point clouds. SAM-6D uses a matching network to
enhance features before finding the actual correspondences.
FoundationPose [30] propose a generalizable and unified
pipeline for pose tracking. The coarse pose is estimated using
a trained transformer based network. This is followed by a
pose refinement network that operates on input image crops
and the renderings of the object model. The refined poses are
then ranked using a self attention based transformer network.

Other methods do not require task-specific training and
leverage the knowledge learned by large scale vision and geo-
metric foundation models. ZS6D [31] extracts features using
pre-trained DINOv2 from the inputs image and templates.
Then, the best template is chosen using the cosine similarity
and 2D-3D correspondences are retrieved using patch-wise
similarity. The pose is estimated using PnP and RANSAC.
FoundPose [32] integrates DINOv2 patch features into bag-of-
words representation for efficient template retrieval. The pose
hypothesis is generated using PnP and RANSAC and is refined
using optimization-based photometric alignment algorithm.
FreeZe [3] fuses descriptors from pre-trained geometric and
vision foundation models to extract discriminative features.
This is followed by RANSAC based registration and a
symmetry-aware pose refinement.

In this work, we use FreeZe’s geometric encoder as a
teacher to train a more efficient student encoder via distillation.
This approach preserves the discriminative power of the
original model while significantly improving efficiency.

B. Feature distillation

Knowledge distillation involves training a compact model
using information from a more complex model or an ensemble
of features [33]. While this concept has been explored in
various computer vision tasks, such as object detection [34]–
[36], image recognition [37], [38], and segmentation [39],
[40], its application to 6D pose estimation has been less
explored. Guo et al. [41] introduce knowledge distillation
for 6D pose estimation by supervising the student with the
teacher’s local predictions. Both teacher and student networks
process an RGB image to generate segmentation masks and
local predictions, which are then used as correspondences
for a PnP solver. HRPose [42] distills features from the
teacher network using an efficient neural network architecture.
The student network is trained with supervision from both
ground-truth 6D poses and geometric features via a feature



similarity loss. CleanPose [43] integrates causal learning
with residual-based knowledge distillation to transfer rich
category information from a pre-trained 3D encoder based on
ULIP-2. The frozen 3D encoder extracts a global point cloud
descriptor, while the pose estimation network computes an
average-pooled descriptor.

In this work, we distil knowledge from descriptors com-
puted by a frozen teacher model, without relying on inter-
mediate representations. Instead, our student is trained to
regress features, which are then used for pose computation
via feature matching. Like CleanPose, we use a frozen 3D
encoder as the teacher, but instead of global CLIP-aligned
representations, our approach uses rotation-invariant, highly
distinctive point-level features from a local 3D encoder.

C. Geometric encoders

Geometric encoders map 3D points to high-dimensional fea-
ture representations that capture local geometric information.
Existing methods operate at either point or voxel level. Point-
based approaches process raw point clouds directly, either
by encoding points independently [17], [44], [45] or within
local neighborhoods to incorporate contextual information [9],
[46]–[50]. Voxel-based approaches first quantize point clouds
into voxel grids at a given resolution and then efficiently
process non-empty voxels using sparse 3D convolutions [13],
[51] or space-filling curves [18]. While voxelization improves
scalability, it comes at the cost of fine geometric details.

In this work, we use a point-based encoder [2] as the
teacher, which provides distinctive descriptor representations
but incurs slower inference. Meanwhile, we employ a voxel-
based encoder [18] as the student, enabling faster runtime. The
teacher relies on a custom module to estimate local reference
frames (LRF in Fig. 1), ensuring rotation invariance by
design. In contrast, the student follows a simple feed-forward
architecture, requiring no custom modules, and achieves
robustness through knowledge distillation.

III. PRELIMINARIES: FREEZE METHOD

Among existing zero-shot pose estimation methods in the
literature [26], [29], [30], we base our work on FreeZe [3],
which achieved state-of-the-art accuracy, winning the BOP
Challenge 2024 [52]. FreeZe has three main stages: prepro-
cessing, feature extraction, and feature matching.

Problem formulation. Given an RGBD image I ∈ RH×W×4

capturing a scene and the 3D model O of an object within
the scene, 6D pose estimation aims to determine the rigid
transformation T of O relative to the reference frame of the
sensor that captured I. Let Q be the query object, and T be
the target object representing O’s partial observation within I.
We define TQ→T = (R, t), where R ∈ SO(3) is the rotation
and t ∈ R3 is translation of Q.

Preprocessing. Let PQ and PT be the 3D point cloud of Q
and T , respectively. PQ is obtained by sampling points on
O’s surface. PT is obtained by using an off-the-shelf zero-
shot segmentor [29] to extract the crop IT ⊂ I containing T ,
and then lifting IT in 3D using sensor’s intrinsic parameters.

Corresp. estim.

Teacher

Student

Student

PT

ΨΩ

Γ

GT

F̃T

L(F̃T ,GT )

PQ

ΨΩ

ΦΘ

GQ

FQ

L(FQ,GQ)

Fig. 2. Overview of dGeDi. Top: A Query point cloud is being fed to both
teacher and student network. We obtain distinctive 3D local descriptor from
(frozen) teacher which guide the student descriptors via proposed distillation
loss. Bottom: Rather then computing the teacher features for Target objects,
we leverage the learning via correspondences. We transfer the features from
query to target point cloud using the ground-truth transformation available
at training time. By leveraging this, we significantly reduce the memory and
compute overhead.

Feature extraction. FreeZe extracts features FQ, FT from
PQ,PT using frozen vision [53] and geometric [2] encoders,
i.e., F = (Fgeo|Fvis), where Fgeo are the geometric features,
Fvis are the visual features, and | is the concatenation operator.
Feature matching. The transformation TQ→T is estimated
using RANSAC [54] and refined with ICP [55]. Point-
level correspondences between PQ and PT are established
via nearest neighbor search in the feature space. Next,
triplets of correspondences are sampled, and those leading
to inconsistent alignments are discarded. For each valid
triplet, the transformation is computed using Singular Value
Decomposition (SVD), and the hypothesis with the highest
inliers ratio is selected. Symmetries are solved using SAR [3].

IV. OBJECT-ORIENTED DISTILLATION

While FreeZe performs feature extraction with both ge-
ometric and vision encoders, we focus on the distillation
of former ones2, assuming F = Fgeo. We introduce a novel
distillation procedure to transfer the distinctive properties of a
slow teacher encoder to a faster student encoder (Fig. 2). We
define our proposed distillation approach as object-oriented
because training supervision is provided at the object level.
First, we extract teacher descriptors FQ = ΦΘ(PQ),FT =
ΦΘ(PT ) using GeDi [2] encoder ΦΘ. Then, we learn student
descriptors GQ = ΨΩ(PQ),GT = ΨΩ(PT ) with a PTV3 [18]
encoder ΨΩ. During distillation, we optimize the parameters
Ω so that GQ ≈ FQ and GT ≈ FT , while Θ remain frozen.
Note that this differs from online knowledge distillation
approaches [56], where both the teacher and student are
neural networks and learn Θ,Ω simultaneously. In our case,
the architectures of ΦΘ and ΨΩ are distinct (Fig. 1). Teacher

2Object-oriented distillation can also be applied to the vision encoder, but
it is out of scope for this work.



features are precomputed, stored in memory, and loaded
as needed during distillation. To optimize this process, we
propose storing teacher features only for query objects and
introduce a module that leverages ground-truth 6D poses to
transfer them to target objects (Sec. IV-A). Moreover, we
propose a custom loss function that focuses learning on noise-
free points, leading to improved performance (Sec. IV-B).

A. Learning via correspondences

During training, given a data sample (PQ,PT ,TQ→T ), we
leverage the ground-truth 6D pose TQ→T to align PQ with
PT and perform a nearest neighbor search in the metric space
to establish the correspondence Γ: PT → PQ, where each
point p ∈ PT is mapped to q = argminq∈PQ∥TQ→T q− p∥,
where p and q represent the 3D coordinates of corresponding
points. We use Γ to transfer query teacher descriptors
FQ = ΦΘ(PQ) to PT , obtaining F̃T = Γ(FQ). By
replacing the explicit computation of FT = ΦΘ(PT ) with
F̃T during distillation, we achieve two key benefits: (i)
improved supervision for target objects and (ii) a scalable,
object-oriented distillation process.

Improved target supervision. Matching features FQ,FT is
challenging because input data differ significantly: PQ is
computed from noise-free synthetic CAD models, while PT is
extracted from noisy real-world RGBD images. This domain
gap results in variations in point densities, partiality, and
artifacts created by lifting the input image I to generate
PT . For example, on the MegaPose-GSO [26] dataset, we
measured that, on average, only 21.4% of the points can be
matched via nearest neighbor search in the teacher feature
space. This means that 78.6% of the features are considered
outliers for feature matching. In contrast, by transferring query
teacher features to target point clouds with Γ, we simulate the
ideal scenario where all target points are matched with the
corresponding query points, promoting reliable supervision
during distillation.

Improved scalability by reducing storage requirements. The
MegaPose-GSO dataset consists of 850 query objects and
16M target objects, resulting in a 1:19k ratio. This ratio can be
further expanded by applying random transformations to the
existing data. As a result, storing target teacher features for a
large-scale training dataset becomes prohibitively expensive
in both computation and storage. For example, the entire
MegaPose [26] dataset would require 14TB of storage. In
contrast, our approach significantly improves scalability by
storing only the query teacher features, reducing the storage
requirements for MegaPose by 411 times (i.e., 34GB).

B. Loss function design

Although GeDi has proven to be both generalizable and
distinctive [2], it still exhibits low inlier ratios, with an average
RON of 3% on the BOP Benchmark and 21.4% on MegaPose-
GSO. This indicates that only a small fraction of points are
highly distinctive, while the majority have ambiguous features.
Consequently, a loss function that assigns equal weight to all
points will be dominated by outliers, leading to overfitting on

ambiguous features. To solve this issue, we propose a novel
loss function:

L(F ,G) =

{
α∥F − G∥2, if ∥F − G∥ < δ

β∥F − G∥+ γ, otherwise.
(1)

Eq. 1 is inspired by Huber loss [24], with a quadratic behavior
for points with low regression error (below a threshold δ) and
a linear behavior otherwise. In our experiments, we set α = 8,
β = 1/5, γ = 8δ2 − δ/5, and δ = 0.3. With these hyper-
parameters, the quadratic component is relatively steep, while
the linear component is nearly flat. This design achieves two
key objectives: (i) for low regression errors, the significant
variation in loss values encourages accurate regression; (ii)
for high regression errors, the minimal variation in loss values
prevents excessive focus on outliers, assigning significantly
smaller loss value compared to traditional loss designs such as
MSE and Huber losses. To validate this assumption, in Sec. V-
B we present an experimental comparison with an alternative
loss formulation that prioritizes learning from points with
high regression error:

L̃(F ,G) = ∥F − G∥ϵL(F ,G), (2)

where L is from Eq. 1 and ϵ is a hyper-parameter inspired
by the Focal loss [25]. In our experiments, we set ϵ = 15.

V. EXPERIMENTS

A. Experimental setup

We validate dGeDi with three experiments: (i) a direct com-
parison against GeDi [2], (ii) a detailed analysis of dGeDi’s
key components, and (iii) a comparison with state-of-the-art
zero-shot pose estimators by integrating dGeDi in FreeZe [3].
During preprocessing, we randomly sample 4k points from
PQ and PT , and apply statistical outlier removal [57] to
PT to reduce depth noise. Both point clouds are normalized
by PQ’s diameter to promote scale invariance. In (i) and
(ii), we perform feature extraction using only the geometric
encoder, while in (iii) we integrate dGeDi with FreeZe’s
vision encoder. In (i) and (iii), we use both ground-truth
and SAM-6D [29] segmentation masks to ensure fairness and
compliance with the zero-shot assumption. In (ii), we perform
object localization using ground-truth segmentation masks
to focus the analysis on feature quality without localization
errors. GeDi extracts 32-dimensional point-level features from
local neighborhoods covering 30% of Q’s diameter. After
feature extraction, we perform feature matching using the
Open3D’s RANSAC and ICP implementations. We run 100k
iterations for RANSAC and 1k iterations for ICP. The student
model is trained using eight NVIDIA A100 GPUs, while
evaluation is performed on a single NVIDIA A40 GPU. Note
that the peak memory usage of dGeDi when processing a
point cloud with 5k points is only 717MB, making it suitable
for deployment on edge devices with limited resources.

Training dataset. We train dGeDi on the MegaPose-
ShapeNetCore [26] dataset, which contains 1 million synthetic
images generated by rendering various 3D objects against



random background scenes. The dataset provides ground-truth
segmentation masks, which we use to localize target objects.

Evaluation datasets. We validate dGeDi on the BOP Bench-
mark datasets with publicly available ground-truth 6D poses:
LM-O [58], T-LESS [59], TUD-L [60], IC-BIN [61], and
YCB-V [62]. This benchmark presents several challenges,
comprising a diverse set of everyday and industrial objects,
both textured and texture-less objects, symmetries, varying
levels of occlusion, and different lighting conditions.

Evaluation metrics. We evaluate the accuracy of dGeDi using
the ratio-of-nearest points (RON) [6] and feature-matching
recall (FMR) [14] metrics. RON measures the percentage
of query points with a nearest neighbor in the target object
within a given distance threshold τ1. FMR measures the
percentage of points with RON greater than τ2. During
validation, we set τ1 = 3% of Q’s diameters and τ2 = 5%.
Note that both metrics do not require registration, providing a
direct assessment of feature quality. To evaluate the 6D pose
estimation accuracy, we use average recall (AR) [23], as in
the BOP Benchmark. We evaluate the efficiency of dGeDi by
measuring the average processing time per image in seconds.

B. Quantitative results

GeDi vs. dGeDi. Tab. I compares GeDi [2] (teacher, Rows 1-
12) and dGeDi (student, Rows 13-24) on the BOP Benchmark
using different types of segmentation masks. When using
ground-truth segmentation masks, dGeDi significantly outper-
forms GeDi by +4.1 RON, +11.8 FMR, and +2.4 AR, while
being 170 times faster (Row 25). dGeDi outperforms GeDi in
RON and FMR scores across all datasets but shows a slight
drop in AR on TUD-L [60] and YCB-V [62]. This difference
arises because RON and FMR directly assess feature quality,
whereas AR is computed post registration, where RANSAC’s
robustness to outliers can obscure the true contribution of
the features. On T-LESS [59], dGeDi achieves a substantial
+14.1 AR improvement over the teacher. We attribute this
significant gain to the specific type of 3D models: unlike
other datasets, T-LESS provides CAD models of industrial
objects with fine-grained geometric details and sharp edges.
As shown in Fig. 3, dGeDi excels in this setting, producing
features that are smoother that the teacher’s and better capture
the underlying geometry. When using SAM-6D zero-shot
segmentation masks, dGeDi outperforms the teacher by +2.7
RON and +9.4 FMR, but achieves a -1.1 AR (Row 26). This
setting is more challenging than the former because zero-
shot segmentation masks may have inaccuracies along object
contours, can miss some parts of the object, and can include
parts of other objects or background, while during distillation
we use ground-truth segmentation masks. Despite this, dGeDi
proves to be robust to the domain gap, achieving a superior
feature quality compared to the teacher (better RON and FMR)
and a comparable AR. Beyond improved accuracy, dGeDi
also achieves superior computational efficiency, extracting
features at more than 50 frames per second. Given that each
image contains an average of five target objects, this implies
that dGeDi can process approximately 260 point clouds per

TABLE I
COMPARISON OF GEDI AND DGEDI ON THE BOP BENCHMARK IN TERMS

OF FEATURE QUALITY (RON, FMR) AND POSE ESTIMATION ACCURACY

(AR) WITH GROUND-TRUTH (GT) AND ZERO-SHOT (ZS) SEGMENTATION

MASKS. AVERAGE FEATURE EXTRACTION TIME PER IMAGE IS REPORTED

IN SECONDS. ROWS 25-26 HIGHLIGHT DGEDI IMPROVEMENT OVER GEDI.

Dataset GT ZS RON ↑ FMR ↑ AR ↑ Run-time ↓
GeDi [2]

1 LM-O ✓ 1.8 8.8 66.9 3.1982 ✓ 3.5 7.4 60.7

3 T-LESS ✓ 0.4 1.0 44.5 3.6004 ✓ 0.4 0.7 31.6

5 TUD-L ✓ 8.2 75.5 96.8 0.6046 ✓ 6.6 58.6 89.5

7 IC-BIN ✓ 1.0 11.6 31.9 6.1268 ✓ 0.6 1.8 29.0

9 YCB-V ✓ 3.6 25.8 59.1 2.89210 ✓ 3.2 23.7 53.0

11 Avg ✓ 3.0 24.5 59.8 3.28412 ✓ 2.9 18.5 52.8

dGeDi (ours)
13 LM-O ✓ 4.3 27.2 67.2 0.02114 ✓ 1.7 23.5 60.4

15 T-LESS ✓ 2.1 15.6 58.6 0.02116 ✓ 1.6 11.6 31.6

17 TUD-L ✓ 16.3 77.8 93.2 0.00318 ✓ 12.8 67.3 83.0

19 IC-BIN ✓ 3.7 18.5 33.1 0.03420 ✓ 4.5 2.6 31.3

21 YCB-V ✓ 9.1 42.3 58.8 0.01522 ✓ 7.4 34.8 52.3

23 Avg ✓ 7.1 36.3 62.2 0.01924 ✓ 5.6 27.9 51.7

25
∆

✓ +4.1 +11.8 +2.4 173×26 ✓ +2.7 +9.4 -1.1

PQ FQ

GQ

Fig. 3. Comparison between teacher (center) and student (right) features on
a query object from T-LESS (left). Colors represent PCA-reduced features.
Student features GQ are smoother and less noisy than teacher features FQ.

second. Processing times (rightmost column) depends on the
number of object instances per image, ranging from 3ms for
a single instance in TUD-L to 34ms for dozens of instances
in IC-BIN [61]. In summary, dGeDi delivers high accuracy
with low latency, making it suitable for time-critical robotics
applications.
Ablation study. Tab. II analyses the impact of three key
components in dGeDi: supervision type (Col. 1), loss function
design (Cols. 2-5), and data augmentation strategy (Col. 6-8).
Row 1 is our baseline, which uses supervision only from



query objects, Eq. 1 as loss, and no data augmentation.
Row 9 is dGeDi’s final configuration, while Rows 2-8 explore
alternative designs. We evaluate each variant on the BOP
Benchmark and report its improvement over the baseline in
the rightmost column. We draw three main insights for these
experiments. First, the learning via correspondence paradigm
introduced in Sec. IV-A improves performance considerably
(+5.2 AR, Row 5) by introducing supervision from partial
and noisy target objects with the same memory requirements.
Second, the proposed loss (Eq. 1) outperforms both traditional
designs (+3.9 AR against MSE in Row 2, +3.5 AR against
Huber in Row 3) and Eq. 2 (+8.7 AR, Row 4). This indicates
that effective distillation of frozen GeDi features requires
a careful loss design, and that reducing the contribution
of points with a large regression error is beneficial. Third,
data augmentation promote generalization (Row 9 achieves
+0.4 AR over Row 5). These ablation experiments confirm that
integrating correspondence-based supervision, a tailored loss,
and data augmentation consistently enhances performance.
dGeDi and FreeZe integration. Tab. III assesses the 6D pose
estimation performance obtained when integrating dGeDi in
FreeZe. We compare against state-of-the-art zero-shot 6D
pose estimators on the same datasets as Tab. I, evaluating
AR and run-time. We compare the performance of dGeDi
with SAM-6D [29], FoundationPose [30], and the original
version of FreeZe, which are the state-of-the-art zero-shot
methods. Rows 1-3 present publicly available results from
the BOP Benchmark leaderboard [63]. Rows 4-5 present
the reproduced results of FreeZe, both with and without
symmetry-aware pose refinement (SAR). Rows 6-7 show
performance when replacing FreeZe’s geometric encoder
GeDi [2] with dGeDi. To ensure a fair comparison, all
methods use the SAM-6D zero-shot segmentor for object
localization except for Rows 8-9 where ground-truth segmen-
tation masks are used. For experiments using ground-truth
segmentation masks, dGeDi achieves the same AR of FreeZe,
while reducing the inference time by 2.7 seconds (Row 9).
When using SAM-6D segmentation masks, dGeDi reaches
70.4 AR compared to FreeZe’s 71.5, yet it runs 5.2 seconds
faster. This run-time improvement is mainly due to dGeDi
ability to process multiple target objects per image in parallel,
unlike FreeZe, which processes them serially. In contrast,
the slight performance drop is mainly due to noise in the
predicted segmentation masks. Since dGeDi is trained with
ground-truth, noise-free segmentation masks, the introduction
of noisy SAM-6D segmentation masks creates a domain gap
that leads to suboptimal pose estimation, although dGeDi
still maintains better feature quality and faster processing.

C. Qualitative results

Figure 4 presents qualitative results with a clear layout:
the first column shows the input images, the second displays
predictions from dGeDi, and the third contains those from
GeDi. For clarity, the predicted poses are overlaid on the
input images and the RON is indicated for each case. Each
row corresponds to an example drawn from a different dataset,
addressing various challenges such as occlusions (a, d, e),
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Fig. 4. Qualitative results on the BOP Benchmark (left) comparing dGeDi
(center) with GeDi (right). We overlay the object’s 3D model transformed
according to the predicted pose on the greyscale input image for better
contrast. Key challenges: occlusions (a, d, e), object symmetry (b), partial
view (c), multiple instances (d).

object symmetries (b), partial views (c), and the presence of
multiple instances of the same object type (d). In examples
(a) and (e), the toy cat is partially occluded by a watering can
(from LM-O) and clipper tool (from YCBV) is obscured by
a food can. GeDi fails in these cases due to the insufficient
visible structure needed to reliably form accurate LRFs. This
leads to incorrect pose predictions. In contrast, dGeDi excels
by directly distilling robust local geometric descriptors from
the available cues. This targeted learning helps dGeDi to
accurately recover the pose even when only limited geometric
information is present. In (d), a juice box is heavily occluded
by cups in a challenging bin picking scenario involving
multiple instances. Although the teacher’s prediction (with a
RON of 0.01) appears quantitatively favorable, its reliance
on sparse LRF cues leads to unreliable pose estimates under
these adverse occlusions. In this case, dGeDi achieves a RON
of 0.02 by extracting and utilizing richer local geometric
details, thereby successfully recovering the correct pose



TABLE II
ABLATION ANALYSIS ON THREE KEY COMPONENTS: SUPERVISION STRATEGY, LOSS FUNCTION, AND DATA AUGMENTATION. THE RIGHTMOST COLUMN

INDICATES EACH VARIANT’S IMPROVEMENT OVER THE BASELINE (ROW 1). ROW 9 SHOWS THE FINAL CONFIGURATION OF DGEDI.

Target obj. Loss function Data augmentation BOP Benchmark
supervision MSE Huber Eq. 2 Eq. 1 Rotation Jitter Point drop. LM-O T-LESS TUD-L IC-BIN YCB-V Avg ∆

1 ✓ 64.5 47.9 88.5 30.8 51.3 56.6 -

2 ✓ ✓ 59.5 54.9 86.4 32.2 56.7 57.9 +1.3
3 ✓ ✓ 61.3 56.2 85.5 31.5 56.8 58.3 +1.7
4 ✓ ✓ 51.2 49.0 77.2 32.1 56.1 53.1 -3.5
5 ✓ ✓ 67.5 56.8 94.1 32.8 57.8 61.8 +5.2
6 ✓ ✓ ✓ 68.9 56.5 94.2 32.0 58.0 61.9 +5.3
7 ✓ ✓ ✓ 67.8 56.8 93.6 33.0 58.2 61.9 +5.3
8 ✓ ✓ ✓ 67.7 57.9 93.5 32.8 58.5 62.1 +5.5

9 ✓ ✓ ✓ ✓ ✓ 67.2 58.6 93.2 33.1 58.8 62.2 +5.6

TABLE III
RESULTS ON THE BOP BENCHMARK IN TERMS OF AR AND RUN-TIME WITH GROUND-TRUTH (GT) AND ZERO-SHOT (ZS) SEGMENTATION MASKS.

Method Segm. AR ↑ Run-time (s) ↓
GT ZS LM-O T-LESS TUD-L IC-BIN YCB-V Avg Avg GPU

1 SAM-6D [29] ✓ 69.9 51.5 90.4 58.8 84.5 71.0 4.5 RTX3090
2 FoundationPose [30] ✓ 75.6 64.6 92.3 50.8 88.9 74.4 35.9 A100
3 FreeZe [3] ✓ 71.6 53.1 94.9 54.5 84.0 71.6 12.7 A40

4 FreeZe [3] w/o SAR ✓ 71.4 53.0 94.8 51.5 83.5 70.9 10.8 A40
5 FreeZe [3] ✓ 71.4 53.0 94.8 54.3 83.9 71.5 13.7 A40
6 FreeZe w/ dGeDi w/o SAR (ours) ✓ 69.6 53.5 93.1 49.1 79.7 69.0 6.4 A40
7 FreeZe w/ dGeDi (ours) ✓ 69.6 53.5 93.1 52.3 83.4 70.4 8.5 A40

8 FreeZe [3] w/o SAR ✓ 80.2 75.1 98.6 53.8 90.2 79.6 8.7 A40
9 FreeZe w/ dGeDi w/o SAR (ours) ✓ 80.5 75.0 98.7 54.2 89.4 79.6 6.0 A40

despite the limited and cluttered geometric information. In (b),
a symmetrical square electrical component is the target. dGeDi
learns fine discriminative features even in the presence of
symmetry, overcoming the ambiguities that affect the GeDi’s
LRF. By focusing on fine patterns and slight asymmetries
within a geometrically symmetrical structure, dGeDi achieves
an accurate pose prediction. In summary, for all cases, dGeDi
generates more distinctive descriptors compared to GeDi
(higher RON) and successfully recovers the correct 6D poses.

VI. CONCLUSIONS

In this work, we explored knowledge distillation for 3D
local descriptors, aiming to retain the effectiveness of GeDi
while significantly improving its efficiency. By training an
efficient student model to regress GeDi descriptors, we
addressed key challenges such as the need for large-scale
point cloud datasets, the transfer of rotation and scale
invariance, and handling low inlier ratios during distillation.
Our approach explicitly enforces consistency between query
and target descriptors, enhancing robustness to occlusions
and partial observations. Experimental results demonstrate
that our distilled model achieves a substantial reduction in
inference time while maintaining competitive performance
with alternative methods. This brings zero-shot 6D pose
estimation closer to real-time feasibility, making it more viable
for practical applications. To the best of our knowledge, this
is the first attempt to apply knowledge distillation to 3D local

descriptors, opening new possibilities for efficient geometric
reasoning in real-world scenarios.
Limitations. Our work focuses solely on improving the
efficiency of geometric feature extraction within the FreeZe
pipeline. While this enhances performance, other components,
such as registration, remain computational bottlenecks.
Future works. We plan to explore strategies to accelerate
these remaining modules, further optimizing the entire 6D
pose estimation pipeline for real-time applications.
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